What is Human Parsing? Human parsing is the process of identifying, segmenting, and categorizing different parts of a human body in an image or video such as head, shoulders, knees, and toes.
Papers and Code
Jul 29, 2025
Abstract:We present an automated pipeline for estimating Verb Frame Frequencies (VFFs), the frequency with which a verb appears in particular syntactic frames. VFFs provide a powerful window into syntax in both human and machine language systems, but existing tools for calculating them are limited in scale, accuracy, or accessibility. We use large language models (LLMs) to generate a corpus of sentences containing 476 English verbs. Next, by instructing an LLM to behave like an expert linguist, we had it analyze the syntactic structure of the sentences in this corpus. This pipeline outperforms two widely used syntactic parsers across multiple evaluation datasets. Furthermore, it requires far fewer resources than manual parsing (the gold-standard), thereby enabling rapid, scalable VFF estimation. Using the LLM parser, we produce a new VFF database with broader verb coverage, finer-grained syntactic distinctions, and explicit estimates of the relative frequencies of structural alternates commonly studied in psycholinguistics. The pipeline is easily customizable and extensible to new verbs, syntactic frames, and even other languages. We present this work as a proof of concept for automated frame frequency estimation, and release all code and data to support future research.
Via

Jul 28, 2025
Abstract:Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.
* ICCV 2025
Via

Jul 22, 2025
Abstract:Accessing knowledge via multilingual natural-language interfaces is one of the emerging challenges in the field of information retrieval and related ones. Structured knowledge stored in knowledge graphs can be queried via a specific query language (e.g., SPARQL). Therefore, one needs to transform natural-language input into a query to fulfill an information need. Prior approaches mostly focused on combining components (e.g., rule-based or neural-based) that solve downstream tasks and come up with an answer at the end. We introduce mKGQAgent, a human-inspired framework that breaks down the task of converting natural language questions into SPARQL queries into modular, interpretable subtasks. By leveraging a coordinated LLM agent workflow for planning, entity linking, and query refinement - guided by an experience pool for in-context learning - mKGQAgent efficiently handles multilingual KGQA. Evaluated on the DBpedia- and Corporate-based KGQA benchmarks within the Text2SPARQL challenge 2025, our approach took first place among the other participants. This work opens new avenues for developing human-like reasoning systems in multilingual semantic parsing.
* During the final evaluation on the DBpedia- and Corporate-based KGQA
benchmarks within the Text2SPARQL challenge 2025, our approach took first
place among the other participants
Via

Jun 17, 2025
Abstract:People regularly make inferences about objects in the world that they cannot see by flexibly integrating information from multiple sources: auditory and visual cues, language, and our prior beliefs and knowledge about the scene. How are we able to so flexibly integrate many sources of information to make sense of the world around us, even if we have no direct knowledge? In this work, we propose a neurosymbolic model that uses neural networks to parse open-ended multimodal inputs and then applies a Bayesian model to integrate different sources of information to evaluate different hypotheses. We evaluate our model with a novel object guessing game called ``What's in the Box?'' where humans and models watch a video clip of an experimenter shaking boxes and then try to guess the objects inside the boxes. Through a human experiment, we show that our model correlates strongly with human judgments, whereas unimodal ablated models and large multimodal neural model baselines show poor correlation.
* Paper published at CogSci 2025
Via

Jun 13, 2025
Abstract:Chemical tables encode complex experimental knowledge through symbolic expressions, structured variables, and embedded molecular graphics. Existing benchmarks largely overlook this multimodal and domain-specific complexity, limiting the ability of multimodal large language models to support scientific understanding in chemistry. In this work, we introduce ChemTable, a large-scale benchmark of real-world chemical tables curated from the experimental sections of literature. ChemTable includes expert-annotated cell polygons, logical layouts, and domain-specific labels, including reagents, catalysts, yields, and graphical components and supports two core tasks: (1) Table Recognition, covering structure parsing and content extraction; and (2) Table Understanding, encompassing both descriptive and reasoning-oriented question answering grounded in table structure and domain semantics. We evaluated a range of representative multimodal models, including both open-source and closed-source models, on ChemTable and reported a series of findings with practical and conceptual insights. Although models show reasonable performance on basic layout parsing, they exhibit substantial limitations on both descriptive and inferential QA tasks compared to human performance, and we observe significant performance gaps between open-source and closed-source models across multiple dimensions. These results underscore the challenges of chemistry-aware table understanding and position ChemTable as a rigorous and realistic benchmark for advancing scientific reasoning.
Via

Jun 09, 2025
Abstract:Optical Chemical Structure Recognition (OCSR) is crucial for digitizing chemical knowledge by converting molecular images into machine-readable formats. While recent vision-language models (VLMs) have shown potential in this task, their image-captioning approach often struggles with complex molecular structures and inconsistent annotations. To overcome these challenges, we introduce GTR-Mol-VLM, a novel framework featuring two key innovations: (1) the \textit{Graph Traversal as Visual Chain of Thought} mechanism that emulates human reasoning by incrementally parsing molecular graphs through sequential atom-bond predictions, and (2) the data-centric principle of \textit{Faithfully Recognize What You've Seen}, which addresses the mismatch between abbreviated structures in images and their expanded annotations. To support model development, we constructed GTR-CoT-1.3M, a large-scale instruction-tuning dataset with meticulously corrected annotations, and introduced MolRec-Bench, the first benchmark designed for a fine-grained evaluation of graph-parsing accuracy in OCSR. Comprehensive experiments demonstrate that GTR-Mol-VLM achieves superior results compared to specialist models, chemistry-domain VLMs, and commercial general-purpose VLMs. Notably, in scenarios involving molecular images with functional group abbreviations, GTR-Mol-VLM outperforms the second-best baseline by approximately 14 percentage points, both in SMILES-based and graph-based metrics. We hope that this work will drive OCSR technology to more effectively meet real-world needs, thereby advancing the fields of cheminformatics and AI for Science. We will release GTR-CoT at https://github.com/opendatalab/GTR-CoT.
Via

May 30, 2025
Abstract:Recent advances in 3D human-aware generation have made significant progress. However, existing methods still struggle with generating novel Human Object Interaction (HOI) from text, particularly for open-set objects. We identify three main challenges of this task: precise human-object relation reasoning, affordance parsing for any object, and detailed human interaction pose synthesis aligning description and object geometry. In this work, we propose a novel zero-shot 3D HOI generation framework without training on specific datasets, leveraging the knowledge from large-scale pre-trained models. Specifically, the human-object relations are inferred from large language models (LLMs) to initialize object properties and guide the optimization process. Then we utilize a pre-trained 2D image diffusion model to parse unseen objects and extract contact points, avoiding the limitations imposed by existing 3D asset knowledge. The initial human pose is generated by sampling multiple hypotheses through multi-view SDS based on the input text and object geometry. Finally, we introduce a detailed optimization to generate fine-grained, precise, and natural interaction, enforcing realistic 3D contact between the 3D object and the involved body parts, including hands in grasping. This is achieved by distilling human-level feedback from LLMs to capture detailed human-object relations from the text instruction. Extensive experiments validate the effectiveness of our approach compared to prior works, particularly in terms of the fine-grained nature of interactions and the ability to handle open-set 3D objects.
* CVPR 2025
Via

Jun 07, 2025
Abstract:Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
Via

May 12, 2025
Abstract:We introduce a new type of foundational model for parsing human anatomy in medical images that works for different modalities. It supports supervised or unsupervised training and can perform matching, registration, classification, or segmentation with or without user interaction. We achieve this by training a neural network estimator that maps query locations to atlas coordinates via regression. Efficiency is improved by sparsely sampling the input, enabling response times of less than 1 ms without additional accelerator hardware. We demonstrate the utility of the algorithm in both CT and MRI modalities.
Via

May 28, 2025
Abstract:While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the ``residual'' -- the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13\% vs. 40.52\%) over the parallel method.
Via
